Time-Series Prediction Using Self-Organising Mixture Autoregressive Network

نویسندگان

  • He Ni
  • Hujun Yin
چکیده

In the past few years, various variants of the self-organising map (SOM) have been proposed to extend its ability for modelling timeseries or temporal sequence. Most of them, however, have little connection to, or are over-simplified, autoregressive (AR) models. In this paper, a new extension termed, self-organising mixture autoregressive (SOMAR) network is proposed to topologically cluster time-series segments into underlying generating AR models. It uses autocorrelation values as the similarity measure between the model and the time-series segments. Such networks can be used for modelling nonstationary timeseries. Experiments on predicting artificial time-series (Mackey-Glass) and real-world data (foreign exchange rates) are presented and results show that the proposed SOMAR network is a viable and superior to other SOM-based approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A self-organising mixture autoregressive network for FX time series modelling and prediction

Nowadays a great deal of effort has been made in order to gain advantages in foreign exchange (FX) rates predictions. However, most existing techniques seldom excel the simple random walk model in practical applications. This paper describes a self-organising network formed on the basis of a mixture of adaptive autoregressive models. The proposed network, termed self-organising mixture autoregr...

متن کامل

Self-Organising Mixture autoregressive Model for Non-Stationary Time Series Modelling

Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the ...

متن کامل

Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models

In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007